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Abstract. In this paper the Anisotropous Whitening Transformation
is proposed in order to perform input data preprocessing when multiple
classes/distributions are managed in a pattern recognition problem. We
present how to apply anisotropous transformations as an alternative to
classical preprocessing techniques like PCA, Fisher or whitening ones.
This transformation performs a clustering of the training patterns, in
the way that neighbors samples tend to become together decreasing the
influence when the distance grows. We summarize this paper in a brief
description of the presented possibility of application for this transfor-
mation.

1 Introduction

The first step in a classification problem is the preprocessing of the data, most
of the usual techniques applied to preprocess the input data in a pattern classi-
fication problem are linear, and always isotropous, that means that this trans-
formation is equally applied to the whole data space [1]. There are multitude of
different technics applied to handle the signals preprocessing as PCA, whitening,
ICA, etc, depending on every certain problem, the proper one is selected. When
the problem involves different distributions/classes, it is used to obtain the trans-
formation to one of them and then apply it to all, but it usually doesn’t produces
satisfactory results. There are also procedures like the Fisher Discriminant that
finds the axis transformation that maximizes the separability between classes.
We propose the application of anisotropous transformations, in the sense that
the influence for a transformation is maximum in the center of it and decreases
with the distance, so it can be seen as an attractor self configured by the samples
distribution. It is designed to handle the preprocessing in classification problems
with different classes, and prepare the data to apply Radial Basis functions [2].
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In chapter 3 this transformation is deeply explained. In chapter 5 we briefly con-
clude the paper remarking the most important aspects and possibilities of the

AWT.

2 Whitening Transformations

The whitening transformation has been broadly studied and applied in different
systems (Kalman filters, Spread Spectrum technics, etc)([3]; in essence, it consists
in setting the covariance matrix of the distribution to the unity. In first place,
the covariance matrix of the samples is obtained, and then its eigenvalues and
eigenvectors. The eigenvectors represent the direction of the principal axes and
the eigenvalues the variance of each of them; in this reference system the co-
variance matrix is diagonal and the diagonal elements are the eigenvalues. Being

Principal Axis —— /*+ >

Fig. 1. Different Influence Functions for the whitening.

C the covariance matrix, the whitening transformation is carried out obtaining
the eigenvalues and eigenvectors of it, let be @ the matrix whose columns are

the eigenvectors and A the diagonal matrix of the eigenvalues, the whitening

transformation is [1]:
Ay, = QA—O-S (1)
3 Anisotropous Whitening Transformations

In order to be capable to apply this transformation to all the possible distribu-
tions in a set of samples, it is enough multiply the transformation by a function
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which influence over the space but the distribution were null. The transforma-
tion will be explained for a single distribution in R? ,A. As has been explained
in the previous section (2) first, the eigenvalues and eigenvectors are obtained.

Cau)g = Co¥, (2)

Then, it is subtracted the mean of the distribution, 7,, to all the samples and

then are multiplied by the matrix whose columns are the eigenvectors obtained
R = (Va,,Va,); these operations changes the reference system to the center of
the principal axis of A.
To convert A into a circular distribution it is chosen its minimum eigenvalue
(lets suppose A,, corresponding to ¥Vg,), Ay, = min(A,,,As;) and then set the
other one equal to it. Taking into account that given a set of samples X and "a”
a constant, cov(aX) = a%cov(X), the following matrix will set the variances of
both axes equal:

c= ((,\a,/a\a.)”’ (11) 3)

Once the samples have been compressed, we could came back to the original
axes, just multiplying by the inverse of the rotating matrix and adding the mean
vector, it would make A be almost whitened with the same mean as in the

beginning. Note that we could set the covariance matrix of A to the identity I
just applying this matrix instead of 3:

- (1/’\61)0'5 0
&= (Y% s “

Until here the transformation made to an input vector % is:
=1
7= [(T-mM,)RCR + 7, (5)

This transformation would modify equally both distributions A and B; so in
order make that the transformation affects A without disturbing B, for every
input sample v = (z,y), (3) could be modified as:

= 1— /\a,/Aal)o.SI( ’ )] 0
=([ M T ) ©)

Q

The a,; element of the matrix has been changed to
f(z,0) = 1= (Aaz/a,)** I(2,0) (7)

We will call this function, I(z, o), Influence Function (IF), that should accom-
plish the following conditions:

o/(r,0)=1ifz=0
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ol(z,0) — 0if z — o0
oI(z,0) is C! and monotonous decressing

There are many functions that handle these requisites, the easiest is one
minus an inverted gaussian, another example could be the following one:

I(z,0) =1- el . (8)

It is similar to a inverted gaussian but the n index. In figure(2) it can be
seen the function with different values for the n index and his comparison to

gaussian.
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Fig. 2. Different Influence Functions for the whitening.

hat (8) is minimum in a ration of the function’s center,

It can be observed t
t of sam-

then it raises and it tends to one when the distance raises. So if a se
this function, the samples near the center would tend

11 as they become distanced the influence of the func-
tion decreases. So actually this function works as an attractor to those samples
near it, because the reference axis are in the center of the function; the influ-
ence of it will depend on the rest of the samples distribution. So, for a certain
samples distribution the anisotropous Transformation (11), will affect to each
sample individually depending on the distance to the mean of the set. If we have
two different distributions in the input set, it could be possible to perform the
whitening to each of the distributions without almost disturbing the other one,
just as has been described for one. Lets suppose we have two distributions

and B in R2. with covariances C, ar®,. The eigenvalues and eigenvectors are

obtained for each distribution:

ples are multiplied by
the center however as we

aVa (9)
Vb (10)

Ql

a/\a —

a ol
Qll

bAb =
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Fig. 3. Two different classes to be classified, the left figure shows the samples and the
right figure shows the covariance curves.

Solving the systems above, it will be obtained Ga, Gg, Ca and ﬁ

C;;; ([1 e (;::_)(g)sj(ml UA)] (1] ) CB—-—__; ([1 i (i:f_}i‘s‘[(x: O'B)] i) )11)

,and then from 5

———
Vg = [('I_I—ﬁa)RACARA +ﬁa] (12)
g = [(H—-ﬁb)ﬁ;CBRB—I +Wib] (13)

Applying both transformations separately to the input samples U there will be
obtained the sets V, and V,; the output set V will be the arithmetic media of
them. In each transformation, all the samples are modified but V, will affect
mainly to those samples of U belonging to A and equally V), will mainly affect
to B.

4 Improving the application fitting parameters

Applying this transformation once, usually will make the distributions to be
properly whitened, the distant samples are not as influenced as the ones in the
distribution’s centers. Making this filtering iteratively, enhances its effect, until
a stationary situation is reached. The final distributions will be determined by
the width of the IF applied and the relation of each sample with the original
distribution. The simplest way to make the distributions to be whitened, is to
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ignore the distant samples in the transformation calculus, just taking the kernel
of the distribution and filtering the rest. At first for each set of distributions
is not posible to know if it would exist a set of parameters that could perform
an AWT that could improve the classification, so the only way to perform the
selection of the parameters may be the use of recursive network training, as
described in [4], [5].

5 Conclusions

In this paper the idea of applying Anisotropous Transformations in the pre-
processing stage for systems such as Neural Networks in its training stage,
presented. We focus in the capability of application of this method as alterna-
tive for preprocessing inputs in multiple classes problems, specially when these
classes present different distributions.
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